Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Nat Commun ; 13(1): 761, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140201

RESUMO

DNA methylation microarrays can be employed to interrogate cell-type composition in complex tissues. Here, we expand reference-based deconvolution of blood DNA methylation to include 12 leukocyte subtypes (neutrophils, eosinophils, basophils, monocytes, naïve and memory B cells, naïve and memory CD4 + and CD8 + T cells, natural killer, and T regulatory cells). Including derived variables, our method provides 56 immune profile variables. The IDOL (IDentifying Optimal Libraries) algorithm was used to identify libraries for deconvolution of DNA methylation data for current and previous platforms. The accuracy of deconvolution estimates obtained using our enhanced libraries was validated using artificial mixtures and whole-blood DNA methylation with known cellular composition from flow cytometry. We applied our libraries to deconvolve cancer, aging, and autoimmune disease datasets. In conclusion, these libraries enable a detailed representation of immune-cell profiles in blood using only DNA and facilitate a standardized, thorough investigation of immune profiles in human health and disease.


Assuntos
Sangue/imunologia , Metilação de DNA/imunologia , Algoritmos , Basófilos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Ilhas de CpG , Epigênese Genética , Citometria de Fluxo , Humanos , Contagem de Leucócitos , Monócitos , Neutrófilos , Análise de Sequência com Séries de Oligonucleotídeos
2.
J Neuroimmunol ; 364: 577808, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093762

RESUMO

Multiple sclerosis (MS) is an autoimmune, neurological disease. We investigated genome-wide DNA methylation profiles of CD4+ and CD8+ T cells from MS patients and healthy controls at baseline and a follow-up visit. Patients were all treatment-naïve at baseline, and either on treatment or remained untreated at the follow-up visit. MS patients show more changes in their T cell DNA methylation profiles as compared to healthy controls over time, with the most pronounced differences observed in the untreated MS patients. These findings underline the potential of DNA methylation as biomarkers in MS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Metilação de DNA/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Feminino , Humanos , Imunossupressores/uso terapêutico , Pessoa de Meia-Idade , Transcriptoma
3.
BMC Cancer ; 22(1): 100, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073851

RESUMO

BACKGROUND: Platinum chemoresistance results in high-grade serous ovarian cancer (HGSOC) disease recurrence. Recent treatment advances using checkpoint inhibitor immunotherapy has not benefited platinum-resistant HGSOC. In ovarian cancer, DNA methyltransferase inhibitors (DNMTi) block methylation and allow expression of silenced genes, primarily affecting immune reactivation pathways. We aimed to determine the epigenome and transcriptome response to sequential treatment with DNMTi and carboplatin in HGSOC. METHODS: In vitro studies with azacitidine or carboplatin alone and in sequential combination. Response was determined by cell growth, death and apoptosis. Genome-wide DNA methylation levels and transcript expression were compared between untreated and azacitidine and carboplatin sequential treatment. RESULTS: Sequential azacitidine and carboplatin significantly slowed cell growth in 50% of cell lines compared to carboplatin alone. The combination resulted in significantly higher cell death in 25% of cell lines, and significantly higher cell apoptosis in 37.5% of cell lines, than carboplatin alone. Pathway analysis of upregulated transcripts showed that the majority of changes were in immune-related pathways, including those regulating response to checkpoint inhibitors. CONCLUSIONS: Sequential azacitidine and carboplatin treatment slows cell growth, and demethylate and upregulate pathways involved in immune response, suggesting that this combination may be used to increase HGSOC response to immune checkpoint inhibitors in platinum-resistant patients who have exhausted all currently-approved avenues of treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Azacitidina/administração & dosagem , Carboplatina/administração & dosagem , Imunidade/efeitos dos fármacos , Neoplasias Císticas, Mucinosas e Serosas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Gradação de Tumores , Neoplasias Císticas, Mucinosas e Serosas/imunologia , Neoplasias Ovarianas/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
4.
Nat Immunol ; 23(1): 99-108, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937926

RESUMO

Enzymes of the TET family are methylcytosine dioxygenases that undergo frequent mutational or functional inactivation in human cancers. Recurrent loss-of-function mutations in TET proteins are frequent in human diffuse large B cell lymphoma (DLBCL). Here, we investigate the role of TET proteins in B cell homeostasis and development of B cell lymphomas with features of DLBCL. We show that deletion of Tet2 and Tet3 genes in mature B cells in mice perturbs B cell homeostasis and results in spontaneous development of germinal center (GC)-derived B cell lymphomas with increased G-quadruplexes and R-loops. At a genome-wide level, G-quadruplexes and R-loops were associated with increased DNA double-strand breaks (DSBs) at immunoglobulin switch regions. Deletion of the DNA methyltransferase DNMT1 in TET-deficient B cells prevented expansion of GC B cells, diminished the accumulation of G-quadruplexes and R-loops and delayed B lymphoma development, consistent with the opposing functions of DNMT and TET enzymes in DNA methylation and demethylation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated depletion of nucleases and helicases that regulate G-quadruplexes and R-loops decreased the viability of TET-deficient B cells. Our studies suggest a molecular mechanism by which TET loss of function might predispose to the development of B cell malignancies.


Assuntos
Linfócitos B/imunologia , Carcinogênese/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Homeostase/imunologia , Estruturas R-Loop/imunologia , Animais , Diferenciação Celular/imunologia , Metilação de DNA/imunologia , Quadruplex G , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 12: 734652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867954

RESUMO

Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.


Assuntos
Tolerância à Endotoxina/genética , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Sepse/genética , Sepse/imunologia , Estudos de Casos e Controles , Metilação de DNA/genética , Metilação de DNA/imunologia , Tolerância à Endotoxina/efeitos dos fármacos , Tolerância à Endotoxina/imunologia , Endotoxinas/toxicidade , Epigênese Genética , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Técnicas In Vitro , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Lipopolissacarídeos/toxicidade , Masculino , Monócitos/efeitos dos fármacos , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Sepse/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia
6.
Clin Epigenetics ; 13(1): 212, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852845

RESUMO

BACKGROUND: Although radiation therapy represents a core cancer treatment modality, its efficacy is hampered by radioresistance. The effect of ionizing radiations (IRs) is well known regarding their ability to induce genetic alterations; however, their impact on the epigenome landscape in cancer, notably at the CpG dinucleotide resolution, remains to be further deciphered. In addition, no evidence is available regarding the effect of IRs on the DNA methylome profile according to the methionine dependency phenotype, which represents a hallmark of metabolic adaptation in cancer. METHODS: We used a case-control study design with a fractionated irradiation regimen on four cancerous cell lines representative of HCC (HepG2), melanoma (MeWo and MeWo-LC1, which exhibit opposed methionine dependency phenotypes), and glioblastoma (U251). We performed high-resolution genome-wide DNA methylome profiling using the MethylationEPIC BeadChip on baseline conditions, irradiated cell lines (cumulative dose of 10 Gy), and non-irradiated counterparts. We performed epigenome-wide association studies to assess the effect of IRs and methionine-dependency-oriented analysis by carrying out epigenome-wide conditional logistic regression. We looked for epigenome signatures at the locus and single-probe (CpG dinucleotide) levels and through enrichment analyses of gene ontologies (GO). The EpiMet project was registered under the ID#AAP-BMS_003_211. RESULTS: EWASs revealed shared GO annotation pathways associated with increased methylation signatures for several biological processes in response to IRs, including blood circulation, plasma membrane-bounded cell projection organization, cell projection organization, multicellular organismal process, developmental process, and animal organ morphogenesis. Epigenome-wide conditional logistic regression analysis on the methionine dependency phenotype highlighted several epigenome signatures related to cell cycle and division and responses to IR and ultraviolet light. CONCLUSIONS: IRs generated a variation in the methylation level of a high number of CpG probes with shared biological pathways, including those associated with cell cycle and division, responses to IRs, sustained angiogenesis, tissue invasion, and metastasis. These results provide insight on shared adaptive mechanisms of the epigenome in cancerous cell lines in response to IR. Future experiments should focus on the tryptic association between IRs, the initiation of a radioresistance phenotype, and their interaction with methionine dependency as a hallmark of metabolic adaptation in cancer.


Assuntos
Adaptação Psicológica , Linhagem Celular Tumoral/efeitos da radiação , Metionina/efeitos adversos , Radiação Ionizante , Metilação de DNA/genética , Metilação de DNA/imunologia , Epigenômica/métodos , Epigenômica/estatística & dados numéricos , Humanos , Metionina/metabolismo
7.
Clin Epigenetics ; 13(1): 213, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863285

RESUMO

BACKGROUND: Cortisol-producing adrenocortical adenoma (CPA) during pregnancy rarely occurs in clinic. Growing evidence suggests that DNA methylation plays a key role in adrenocortical adenomas. The present study aims to examine the genome-wide DNA methylation profiles and identify the differences in DNA methylation signatures of non-pregnant and pregnant patients with CPA. RESULTS: Four pregnant and twelve non-pregnant patients with CPA were enrolled. The pregnant patients with CPA had higher serum cortisol, Estradiol, Progesterone, and human chorionic gonadotropin concentration, while having lower serum FSH (follicle-stimulating hormone) and luteinizing hormone concentrations (P < 0.01). Compared with the non-pregnant patients, the duration is shorter, and the growth rate of the tumor is faster in pregnant patients with CPA (P < 0.05). Morphology and cell proliferation assay showed that the percentage of Ki-67 positive cells in CPA were higher in pregnant group than non-pregnant group (8.0% vs 5.5%, P < 0.05). The DNA methylation analysis showed that Genome-wide DNA methylation signature difference between pregnant and non-pregnant with CPA, that the pregnant group had more hypermethylated DMPs (67.94% vs 22.16%) and less hypomethylated DMPs (32.93% vs 77.84%). The proportion of hypermethylated DMPs was relatively high on chromosomes 1 (9.68% vs 8.67%) and X (4.99% vs 3.35%) but lower on chromosome 2(7.98% vs 12.92%). In pregnant patients with CPA, 576 hypomethylated DMPs and 1109 hypermethylated DMPs were identified in the DNA promoter region. Bioinformatics analysis indicated that the Wnt/ß-Catenin pathway, Ras/MAPK Pathway and PI3K-AKT Pathway were associated with the development of CPA during pregnancy. CONCLUSIONS: Genome-wide DNA methylation profiling of CPA in non-pregnant and pregnant patients was identified in the present study. Alterations of DNA methylation were associated with the pathogenesis and exacerbation of CPA during pregnancy.


Assuntos
Adenoma Adrenocortical/patologia , Metilação de DNA/genética , Adenoma Adrenocortical/fisiopatologia , Adulto , Metilação de DNA/imunologia , Feminino , Crescimento e Desenvolvimento/genética , Crescimento e Desenvolvimento/fisiologia , Humanos , Gravidez
8.
Clin Epigenetics ; 13(1): 207, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789319

RESUMO

BACKGROUND: A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). METHODS: Leukocyte subtype-specific unmethylated/methylated CpG sites were selected, and methylation levels at these sites were used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. RESULTS: The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66-4.29), all Padj. < 1e-04). A higher neutrophil ratio and lower ratios of NK cells, CD4 + T cells, CD8 + T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28-1.42), all Padj. < 1e-04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P = 0.019). CONCLUSION: This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.


Assuntos
Contagem de Leucócitos/estatística & dados numéricos , Neoplasias de Mama Triplo Negativas/genética , Adulto , Estudos de Casos e Controles , Metilação de DNA/genética , Metilação de DNA/imunologia , Epigenômica/métodos , Epigenômica/estatística & dados numéricos , Feminino , Humanos , Contagem de Leucócitos/classificação , Contagem de Leucócitos/métodos , Modelos Logísticos , Pessoa de Meia-Idade , Razão de Chances , Modelos de Riscos Proporcionais , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/imunologia
9.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831166

RESUMO

The generation of memory is a cardinal feature of the adaptive immune response, involving different factors in a complex process of cellular differentiation. This process is essential for protecting the second encounter with pathogens and is the mechanism by which vaccines work. Epigenetic changes play important roles in the regulation of cell differentiation events. There are three types of epigenetic regulation: DNA methylation, histone modification, and microRNA expression. One of these epigenetic changes, DNA methylation, occurs in cytosine residues, mainly in CpG dinucleotides. This brief review aimed to analyse the literature to verify the involvement of DNA methylation during memory T and B cell development. Several studies have highlighted the importance of the DNA methyltransferases, enzymes that catalyse the methylation of DNA, during memory differentiation, maintenance, and function. The methylation profile within different subsets of naïve activated and memory cells could be an interesting tool to help monitor immune memory response.


Assuntos
Metilação de DNA/imunologia , Imunidade , Memória Imunológica , Animais , Linfócitos B/imunologia , Humanos , Modelos Imunológicos , Linfócitos T/imunologia
10.
Clin Epigenetics ; 13(1): 208, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798907

RESUMO

BACKGROUND: Prenatal exposure to essential and non-essential metals impacts birth and child health, including fetal growth and neurodevelopment. DNA methylation (DNAm) may be involved in pathways linking prenatal metal exposure and health. In the Project Viva cohort, we analyzed the extent to which metals (As, Ba, Cd, Cr, Cs, Cu, Hg, Mg, Mn, Pb, Se, and Zn) measured in maternal erythrocytes were associated with differentially methylated positions (DMPs) and regions (DMRs) in cord blood and tested if associations persisted in blood collected in mid-childhood. We measured metal concentrations in first-trimester maternal erythrocytes, and DNAm in cord blood (N = 361) and mid-childhood blood (N = 333, 6-10 years) with the Illumina HumanMethylation450 BeadChip. For each metal individually, we tested for DMPs using linear models (considered significant at FDR < 0.05), and for DMRs using comb-p (Sidak p < 0.05). Covariates included biologically relevant variables and estimated cell-type composition. We also performed sex-stratified analyses. RESULTS: Pb was associated with decreased methylation of cg20608990 (CASP8) (FDR = 0.04), and Mn was associated with increased methylation of cg02042823 (A2BP1) in cord blood (FDR = 9.73 × 10-6). Both associations remained significant but attenuated in blood DNAm collected at mid-childhood (p < 0.01). Two and nine Mn-associated DMPs were identified in male and female infants, respectively (FDR < 0.05), with two and six persisting in mid-childhood (p < 0.05). All metals except Ba and Pb were associated with ≥ 1 DMR among all infants (Sidak p < 0.05). Overlapping DMRs annotated to genes in the human leukocyte antigen (HLA) region were identified for Cr, Cs, Cu, Hg, Mg, and Mn. CONCLUSIONS: Prenatal metal exposure is associated with DNAm, including DMRs annotated to genes involved in neurodevelopment. Future research is needed to determine if DNAm partially explains the relationship between prenatal metal exposures and health outcomes.


Assuntos
Metilação de DNA/genética , Sangue Fetal/química , Adulto , Metilação de DNA/imunologia , Epigenoma/genética , Epigenoma/imunologia , Feminino , Sangue Fetal/imunologia , Humanos , Lactente , Recém-Nascido , Gravidez , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/estatística & dados numéricos , Efeitos Tardios da Exposição Pré-Natal/genética
11.
Front Immunol ; 12: 752380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691068

RESUMO

The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.


Assuntos
COVID-19/imunologia , Metilação de DNA/imunologia , Epigênese Genética/imunologia , SARS-CoV-2/imunologia , COVID-19/genética , Humanos , Especificidade de Órgãos , Pandemias
12.
Genes (Basel) ; 12(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573295

RESUMO

Epigenetic modifications occur in response to environmental changes and play a fundamental role in the regulation of gene expression. PA is found to elicit an inflammatory response, both from the innate and adaptive divisions of the immunological system. The inflammatory reaction is considered a vital trigger of epigenetic changes that in turn modulate inflammatory actions. The tissue responses to PA involve local and general changes. The epigenetic mechanisms involved include: DNA methylation, histone proteins modification and microRNA. All of them affect genetic expression in an inflammatory milieu in physical exercise depending on the magnitude of physiological stress experienced by the exerciser. PA may evoke acute or chronic biochemical and physiological responses and have a positive or negative immunomodulatory effect.


Assuntos
Epigênese Genética/imunologia , Exercício Físico/imunologia , Imunomodulação/genética , Inflamação/genética , Animais , Metilação de DNA/imunologia , Modelos Animais de Doenças , Exercício Físico/genética , Histonas/genética , Histonas/metabolismo , Humanos , Inflamação/imunologia , Processamento de Proteína Pós-Traducional/imunologia
13.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34548385

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, can be used for predicting immunotherapy responsiveness and survival outcome. However, the evaluation of CD8+ TILs currently relies on histopathological methodology with high variability. We therefore aimed to develop a DNA methylation signature for CD8+ TILs (CD8+ MeTIL) that could evaluate immune response and prognosis in colorectal cancer (CRC). METHODS: A CD8+ MeTIL signature score was constructed by using CD8+ T cell-specific differentially methylated positions (DMPs) that were identified from Illumina EPIC methylation arrays. Immune cells, colon epithelial cells, and two CRC cohorts (n=282 and 335) were used to develop a PCR-based assay for quantitative analysis of DNA methylation at single-base resolution (QASM) to determine CD8 + MeTIL signature score. RESULTS: Three CD8+ T cell-specific DMPs were identified to construct the CD8+ MeTIL signature score, which showed a dramatic discriminability between CD8+ T cells and other cells. The QASM assay we developed for CD8+ MeTIL markers could measure CD8+ TILs distributions in a fully quantitative, accurate, and simple manner. The CD8+ MeTIL score determined by QASM assay showed a strong association with histopathology-based CD8+ TIL counts and a gene expression-based immune marker. Furthermore, the low CD8+ MeTIL score (enriched CD8+ TILs) was associated with MSI-H tumors and predicted better survival in CRC cohorts. CONCLUSIONS: This study developed a quantitative DNA methylation-based signature that was reliable to evaluate CD8+ TILs and prognosis in CRC. This approach has the potential to be a tool for investigations on CD8+ TILs and a biomarker for therapeutic approaches, including immunotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/imunologia , Metilação de DNA/imunologia , Imunidade/imunologia , Linfócitos do Interstício Tumoral/imunologia , Humanos , Prognóstico
14.
Front Immunol ; 12: 702037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335613

RESUMO

Primary Sjögren's syndrome (pSS) is an autoimmune inflammatory disease with profound clinical heterogeneity, where excessive activation of the type I interferon (IFN) system is considered one of the key mechanisms in disease pathogenesis. Here we present a DNA methylation-based IFN system activation score (DNAm IFN score) and investigate its potential associations with sub-phenotypes of pSS. The study comprised 100 Swedish patients with pSS and 587 Swedish controls. For replication, 48 patients with pSS from Stavanger, Norway, were included. IFN scores were calculated from DNA methylation levels at the IFN-induced genes RSAD2, IFIT1 and IFI44L. A high DNAm IFN score, defined as > meancontrols +2SDcontrols (IFN score >4.4), was observed in 59% of pSS patients and in 4% of controls (p=1.3x10-35). Patients with a high DNAm IFN score were on average seven years younger at symptom onset (p=0.017) and at diagnosis (p=3x10-3). The DNAm IFN score levels were significantly higher in pSS positive for both SSA and SSB antibodies compared to SSA/SSB negative patients (pdiscovery=1.9x10-8, preplication=7.8x10-4). In patients positive for both SSA subtypes Ro52 and Ro60, an increased score was identified compared to single positive patients (p=0.022). Analyzing the discovery and replication cohorts together, elevated DNAm IFN scores were observed in pSS with hypergammaglobulinemia (p=2x10-8) and low C4 (p=1.5x10-3) compared to patients without these manifestations. Patients < 70 years with ongoing lymphoma at DNA sampling or lymphoma at follow-up (n=7), presented an increased DNAm IFN score compared to pSS without lymphoma (p=0.025). In conclusion, the DNAm-based IFN score is a promising alternative to mRNA-based scores for identification of patients with activation of the IFN system and may be applied for patient stratification guiding treatment decisions, monitoring and inclusion in clinical trials.


Assuntos
Metilação de DNA/imunologia , Interferon Tipo I/imunologia , Síndrome de Sjogren/imunologia , Feminino , Humanos , Linfoma/imunologia , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/imunologia
15.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34413165

RESUMO

BACKGROUND: Anti-CD19 chimeric antigen receptor T cells (CART-19) frequently induce remissions in hemato-oncological patients with recurred and/or refractory B-cell tumors. However, malignant cells sometimes escape the immunotherapeutic targeting by CD19 gene mutations, alternative splicing or lineage switch, commonly causing lack of CD19 expression on the surface of neoplastic cells. We assumed that, in addition to the known mechanisms, other means could act on CD19 to drive antigen-negative relapse. METHODS: Herein, we studied the mechanism of antigen loss in an in vivo CD19-negative recurrence model of chronic lymphocytic leukemia (CLL) to CART-19, established using NOD-scid IL2Rgnull mice and HG3 cell line. We validated our findings in vitro in immortalized B-cell lines and primary CLL cells. RESULTS: In our in vivo CLL recurrence model, up to 70% of CART-19-treated mice eventually recurred with CD19-negative disease weeks after initial positive response. We found that the lack of CD19 expression was caused by promoter DNA hypermethylation. Importantly, the expression loss was partially reversible by treatment with a demethylating agent. Moreover, this escape mechanism was common for 3 B-cell immortalized lines as well as primary CLL cells, as assessed by in vitro coculture experiments. CONCLUSIONS: Epigenetically driven antigen escape could represent a novel, yet at least partially reversible, means of CD19 loss to CART-19 in B-cell tumors.


Assuntos
Metilação de DNA/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Feminino , Humanos , Masculino , Camundongos
16.
Front Immunol ; 12: 704557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276701

RESUMO

The role of DNA methylation of breast cancer-infiltrating immune cells has not been fully explored. We conducted a cohort-based retrospective study analyzing the genome-wide immune-related DNA methylation of 1057 breast cancer patients from the TCGA cohort and GSE72308 cohort. Based on patients' overall survival (OS), a prognostic risk score system using 18 immune-related methylation genes (IRMGs) was established and further validated in an independent cohort. Kaplan-Meier analysis showed a clear separation of OS between the low- and high-risk groups. Patients in the low-risk group had a higher immune score and stromal score compared with the high-risk group. Moreover, the characteristics based on 18-IRMGs signature were related to the tumor immune microenvironment and affected the abundance of tumor-infiltrating immune cells. Consistently, the 18-IRMGs signatures showed similar influences on immune modulation and survival in another external validation cohort (GSE72308). In conclusion, the proposed 18-IRMGs signature could be a potential marker for breast cancer prognostication.


Assuntos
Neoplasias da Mama , Metilação de DNA/imunologia , DNA de Neoplasias/imunologia , Microambiente Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Estudos Retrospectivos , Taxa de Sobrevida
17.
Cancer Med ; 10(16): 5681-5695, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227253

RESUMO

In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two-factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.


Assuntos
5-Metilcitosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , Recidiva Local de Neoplasia/epidemiologia , Neoplasias da Próstata/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/imunologia , Conjuntos de Dados como Assunto , Epigênese Genética/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Calicreínas/sangue , Masculino , Modelos Genéticos , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Curva ROC , Medição de Risco/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
18.
J Immunol Res ; 2021: 5590217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239942

RESUMO

Regulatory T (Treg) cells are a subtype of CD4+ T cells that play a significant role in the protection from autoimmunity and the maintenance of immune tolerance via immune regulation. Epigenetic modifications of Treg cells (i.e., cytosine methylation at the promoter region of the transcription factor, Forkhead Box P3) have been found to be closely associated with allergic diseases, including allergic rhinitis, asthma, and food allergies. In this study, we highlighted the recent evidence on the contribution of epigenetic modifications in Treg cells to the pathogenesis of allergic diseases. Moreover, we also discussed directions for future clinical treatment approaches, with a particular emphasis on Treg cell-targeted therapies for allergic disorders.


Assuntos
Metilação de DNA/imunologia , Epigênese Genética/imunologia , Tolerância Imunológica/genética , Hipersensibilidade Respiratória/genética , Linfócitos T Reguladores/imunologia , Animais , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Humanos , Tolerância Imunológica/efeitos dos fármacos , Regiões Promotoras Genéticas , Hipersensibilidade Respiratória/diagnóstico , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Índice de Gravidade de Doença , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico
19.
Clin Epigenetics ; 13(1): 122, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090482

RESUMO

BACKGROUND: Resistance to DNA damaging chemotherapies leads to cancer treatment failure and poor patient prognosis. We investigated how genomic distribution of accessible chromatin sites is altered during acquisition of cisplatin resistance using matched ovarian cell lines from high grade serous ovarian cancer (HGSOC) patients before and after becoming clinically resistant to platinum-based chemotherapy. RESULTS: Resistant lines show altered chromatin accessibility at intergenic regions, but less so at gene promoters. Clusters of cis-regulatory elements at these intergenic regions show chromatin changes that are associated with altered expression of linked genes, with enrichment for genes involved in the Fanconi anemia/BRCA DNA damage response pathway. Further, genome-wide distribution of platinum adducts associates with the chromatin changes observed and distinguish sensitive from resistant lines. In the resistant line, we observe fewer adducts around gene promoters and more adducts at intergenic regions. CONCLUSIONS: Chromatin changes at intergenic regulators of gene expression are associated with in vivo derived drug resistance and Pt-adduct distribution in patient-derived HGSOC drug resistance models.


Assuntos
Cromatina/genética , Metilação de DNA/imunologia , DNA Intergênico/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos
20.
Cancer Lett ; 518: 115-126, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34098061

RESUMO

Cancer immunotherapies targeting the interaction between Programmed death 1 (PD-1) and Programmed death ligand 1 (PD-L1) have recently been approved for the treatment of multiple cancer types, including gastric cancer. However, not all patients respond to these therapies, while some eventually acquire resistance. A partial predictive biomarker for positive response to PD-1/PD-L1 therapy is PD-L1 expression, which has been shown to be under strict post-transcriptional control in cancer. By fractionating the PD-L1 3' untranslated region (3'UTR) into multiple overlapping fragments, we identified a small 100-nucleotide-long cis-acting region as being necessary and sufficient for post-transcriptional repression of PD-L1 expression in gastric cancer. In parallel, we performed a correlation analysis between PD-L1 expression and all host miRNAs in stomach cancer patient samples. A single miRNA, miR-105-5p, was predicted to bind to the identified cis-acting 3'UTR region and to negatively correlate with PD-L1 expression. Overexpression of miR-105-5p in gastric cancer cell lines resulted in decreased expression of PD-L1, both at the total protein and surface expression levels, and induced CD8+ T cell activation in co-culture assays. Finally, we show that expression of miR-105-5p in gastric cancer is partly controlled by DNA methylation of a cancer- and germline-specific promoter of its host gene, GABRA3. Dysregulation of miR-105-5p is observed in many cancer types and this study shows the importance of this miRNA in controlling the immunogenicity of cancer cells, thus highlighting it as a potential biomarker for PD-1/PD-L1 therapy and target for combinatorial immunotherapy.


Assuntos
Antígeno B7-H1/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Metilação de DNA/genética , Metilação de DNA/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Células HEK293 , Humanos , MicroRNAs/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...